A new isomorphic ℓ1 predual not isomorphic to a complemented subspace of a C (K ) space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hilbert C∗-module Not Anti-isomorphic to Itself

We study the complexification of real Hilbert C∗-modules over real C∗-algebras. We give an example of a Hilbert Ac-module that is not the complexification of any Hilbert A-module, where A is a real C∗-algebra.

متن کامل

Isomorphic but not Lower Base-Isomorphic Cylindric Set Algebras

It is examined in several papers when is it true the isomorphism of two cylindric set algebras is a base-isomorphism. Problem 1. For which M ∈ CAα it is true that if for i = 0 and i = 1 Di ∈ Caα, f i : M→Di is an isomorphisms, and base Di = Vi imply that there exists a bijection g : V0 → V1 such that g = f1 ◦ f −1 0 (for notations and notions see [3] and [5]). By the Löwenheim-Skolem theorem th...

متن کامل

Simple nuclear C*-algebras not isomorphic to their opposites.

We show that it is consistent with Zermelo-Fraenkel set theory with the axiom of choice (ZFC) that there is a simple nuclear nonseparable [Formula: see text]-algebra, which is not isomorphic to its opposite algebra. We can furthermore guarantee that this example is an inductive limit of unital copies of the Cuntz algebra [Formula: see text] or of the canonical anticommutation relations (CAR) al...

متن کامل

Non-isomorphic C∗-algebras with Isomorphic Unitary Groups

Dye, [Ann. of Math. (2) 61 (1955), 73–89] proved that the discrete unitary group in a factor determines the algebraic type of the factor. Afterwards, for a large class of simple unital C∗-algebras, Al-Rawashdeh, Booth and Giordano [J. Funct. Anal. 262 (2012), 4711–4730] proved that the algebras are ∗-isomorphic if and only if their unitary groups are isomorphic as abstract groups. In this paper...

متن کامل

A Nonseparable Amenable Operator Algebra Which Is Not Isomorphic to a C∗-algebra

It has been a longstanding problem whether every amenable operator algebra is isomorphic to a (necessarily nuclear) C∗-algebra. In this note, we give a nonseparable counterexample. The existence of a separable counterexample remains an open problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2013

ISSN: 0024-6093

DOI: 10.1112/blms/bdt002